**Addition Of Vectors**

**(1). If a Vector A = 3i +3j -k**

** Vector B = 2i + 4j + 5k**

** Vector C = 3i - 2j + 4k**

** Find Vector A + B + C**

**Solution Using Casio fx991es**

**[ON] [MODE] [8] [1] (VECT A) [1] (WE HAVE 3 ROWS) [3] [=] [3] [=] [-] [1] [=] [AC] [SHIFT] [5] [1] (DIM) [2] (VECT B) [1] [2] [=] [4] [=] [5] [=] [AC] [SHIFT] [5] [1] (DIM) [3] (VECT C) [1] [3] [=] [-] [2] [=] [4] [=] [AC] [SHIFT] [5] [3] (VECT A) [+] [SHIFT] [5] [4] (VECT B) [+] [SHIFT] [5] [5] (VECT C) [=]**

**Ans = 8i + 5j + 8k**

**Subtraction Of Vectors**

**(2). If Vector A = 3i + 2j + 4k**

** Vector B = 2i - 3j + 5k**

** Find Vector A - B**

**Solution Using Casio fx991es**

**[SHIFT] [9] [3] [=] [AC] [MODE] [8] [1] (VECT A) [1] (B/C IT HAS 3 ROWS) [3] [=] [2] [=] [4] [=] [AC] [SHIFT] [5] [1] [2] (VECT B) [1] [2] [=] [-] [3] [=] [5] [=] [AC] [SHIFT] [5] [3] (VECT A) [-] [SHIFT] [5] [4] (VECT B) [=]**

**Ans = i + 5j -k**

__NB__: After inputing the values and want to check each data entered or to correct entered values press [SHIFT] [5] [2] (DATA) EITHER PRESS [1] FOR (VECT A) OR 2 FOR (VECT B) THEN YOU CAN NOW CHECK IT OR CORRECT IT THEN.

**Multiplication Of Vectors Using Dot Product (.)**

**(3). If Vector A = 3i + 2j - 3k**

** Vector B = 2i + 3j + 4k**

**Find Vector A . B**

**Solution Using Casio fx991es**

**[SHIFT] [9] [3] [=] [AC] [MODE] [8] [1] (VECT A) [1] [3] [=] [2] [=] [-] [3] [=] [AC] [SHIFT] [5] [1] [2] (VECT B) [1] [2] [=] [3] [=] [4] [=] [AC] [SHIFT] [5] [3] (VECT A) [SHIFT] [5] [7] (DOT) [SHIFT] [5] [4] (VECT B) [=]**

**Ans = 0**

**Multiplication Of Vectors Using Cross Product (×) or (^)**

**(4). If Vector A = 2i + 3j +k**

** Vector B = 3i - 2j + 3k**

** Find Vector A×B or A^B**

**Solution Using Casio fx991es**

**[SHIFT] [9] [3] [=] [AC] [MODE] [8] [1] (VECT A) [1] [2] [=] [3] [=] [1] [=] [AC] [SHIFT] [5] [1] [2] (VECT B) [1] [3] [=] [-] [2] [=] [3] [=] [AC] [SHIFT] [5] [3] (VECT A) [×] (MULTIPLICATION SIGN) [SHIFT] [5] [4] (VECT B) [=]**

**Ans = 11i - 3j - 13k**

__NB__: This can help to solve unit angles between Vectors easier.

## Comment on this post